Note

1993 Table of Standard Atomic Weights abridged to Five Significant Figures*

T.B. Coplen

US Geological Survey, 431 National Center, Reston, VA 22092 (USA)

N.N. Greenwood

School of Chemistry, University of Leeds, Leeds LS2 9JT (UK)

H.S. Peiser

COMASS Inc., 638 Blossom Drive, Rockville, MD 20850 (USA)

Introduction

The detail and the number of significant figures in the IUPAC Table of Standard Atomic Weights, as is found in the biennial reports of the Commission on Atomic Weights and Isotopic Abundances, published in Pure and Applied Chemistry, exceed the needs and interests of most users, who are more concerned with the length of time during which a given table has validity to the precision limit of their interests. The Commission on Atomic Weights and Isotopic Abundances in 1987, therefore, decided to prepare for publication a revised and updated version of the 1981 Table of Atomic Weights abridged to Five Significant Figures, or fewer where uncertainties do not warrant even five-figure accuracy (this currently applies to eight elements). When an atomic weight is known to more than five significant figures, it is abridged in this Table to the five-figure value closest to the unabridged best value. When the sixth digit of the unabridged value is 5 exactly, it is rounded up or down to make the fifth digit in this abridged Table even. The single-digit uncertainty in the tabulated atomic weight is held to be symmetric - that is, it is applicable with either a positive or a negative sign.

The abridged Table is here given with the reasonable hope that not even one of the quoted values will need to be changed because of every biennial revision of the unabridged Table, although the quoted uncertainties

TABLE 1. Atomic weights, scaled to the relative atomic mass, $A_r(^{12}C) = 12$, are here quoted to five significant figures unless the dependable accuracy is more limited by either the combined uncertainties of the best published atomic-weight determinations, or by the variability of isotopic composition in normal terrestrial occurrences (the latter applies to elements **annotated r**). The last significant figure of each tabulated value is considered reliable to ± 1 except when a larger single-digit uncertainty is inserted in parentheses following the atomic weight. Neither the highest nor the lowest actual atomic weight of any normal sample is thought likely to differ from the tabulated value by more than the assigned uncertainty. However, the tabulated values do not apply either to samples of highly exceptional isotopic composition arising from most unusual geological occurrences (for elements **annotated g**) or to those whose isotopic composition has been artificially altered. Such might even be found in commerce without disclosure of that modification (for elements **annotated m**). Elements annotated by an asterisk (*) have no stable isotope and are generally represented in this Table by just one of the element's commonly known radioisotopes, with a corresponding relative atomic mass in the atomic-weight column. However, three such elements (Th, Pa and U) do have a characteristic terrestrial isotopic composition, and for these an atomic weight is tabulated. For more detailed information users should refer to the full IUPAC Table of Standard Atomic Weights.

		Atomic	Atomic						Atomic	Atomic	
Name	<u>Symbol</u>	<u>No.</u>	<u>Wt.</u>	Annotation		ons	Name	<u>Symbol</u>	<u>No.</u>	Wt	<u>Annotations</u>
Actinium*	²²⁷ Ac	89	227.03				Mercury	Hg	80	200.59(2)	
Aluminium	Al	13	26.982				Molybdenum	Mo	42	95.94	g
Americium*	²⁴¹ Am	95	241.06				Neodymium	Nd	60	144.24(3)	g
Antimony (Stibium)	Sb	51	121.76	g			Neon	Ne	10	20.180	m
Argon	Ar	18	39.948	ğ		r	Neptunium*	237 _{Np}	93	237.05	
Arsenic	As	33	74.922	•			Nickel	Ni	28	58.693	
Astatine*	²¹⁰ At	85	209.99				Niobium	Nb	41	92.906	
Barium	Ba	56	137.33				Nitrogen	N	7	14.007	
Bcrkehum*	²⁴⁹ Bk	97	249.08				Nobelium*	259No	102	259.10	
Beryllium	Be	4	9.0122				Osmium	Os	76	190.23(3)	g
Bismuth	Bi	83	208.98				Oxygen	0	8	15.999	-
Boron	В	5	10.811(5)	g	m	r	Palladium	Pd	46	106.42	g
Bromine	Br	35	79.904	U			Phosphorus	Р	15	30.974	
Cadmium	Cd	48	112.41				Platinum	Pt	78	195 08(3)	
											(continued)

(continued)

^{*}Prepared for the International Union of Pure and Applied Chemistry, Inorganic Chemistry Division, Commission on Atomic Weights and Isotopic Abundances.

TABLE 1. (continued)

Caesium		55	122.01			Plutonium*	²³⁹ Pu	94	239 05		
Caesium Calcium	Cs Ca	55 20	132.91	-		Plutonium* Polonium*	²¹⁰ Po	94 84	239 05		
Californium*	²⁵² Cf	20 98	40 078(4) 252.08	g			K	84 19	39.098	-	
Carbon		98 6			_	Potassium (Kalium)	к Рг	59		g	
Carbon Cerium	C Ce	58	12.011 140.12	g	r	Praseodymium Promethium*	147Pm	59 61	140 91 146.92		
Chlorine	Cl	58 17		g		Protactinium*		91	231.04		
Chromium	Cr	24	35.453 51.996	m		Radium*	Pa 226Ra	88	226 03		
Cobalt	Cr	24	58.933			Radium* Radon*	222 _{Rn}	88 86	222 02		
	Cu	29			_	Rhenium	Re	80 75	186.21		
Copper Curium *	²⁴⁴ Cm	29 96	63 546(3) 244.06		r	Rhodium	Re	45	102.91		
		96 66		_		Rubidium	Rb	45 37	85.468		
Dysprosium	Dy 252 _{Es}		162.50(3)	g							
Einsteinium*		99	252 08			Ruthenium	Ru	44	101.07(2)	g	
Erbium	Er	68	167.26(3)	g		Samarium	Sm	62	150 36(3)	g	
Europium Fermium*	Eu ²⁵⁷ Fm	63 100	151 96 257.10	g		Scandium	Sc	21	44.956		
	Fm					Selenium	Se	34	78 96(3)		
Fluorine	F 223 _{Fr}	9	18 998			Silicon	Si	14	28 086		
Francium*		87	223.02			Silver	Ag	47	107 87		
Gadolinium	Gd	64	157.25(3)	g		Sodium (Natrium)	Na	11	22.990		
Gallium	Ga	31	69 723			Strontium	Sr	38	87.62	g	
Germanium	Ge	32	72.61(2)			Sulfur	S	16	32 066(6)	g	
Gold	Au	79	196.97			Tantalum	Ta	73	180 95		
Hafnium	Hf	72	178.49(2)			Technetium*	99 _{Tc}	43	98.906		
Helium	He	2	4 0026			Tellurium	Te	52	127 60(3)	g	
Holmium	Но	67	164 93			Terbium	ть	65	158 93		
Hydrogen	н	1	1 0079	g m		Thallium	Tl	81	204.38		
Indium	In	49	114 82			Thorium*	Th	90	232 04	g	
odine	I	53	126.90			Thulium	Tm	69	168 93		
ridium	Ir	77	192 22			Tin	Sn	50	118 71		
ron	Fe	26	55.845(2)			Titanium	Tı	22	47.867		
Krypton	Kr	36	83 80	g m		Tungsten (Wolfram)	w	74	183 84		
Lanthanum	La	57	138.91			Uranium*	U	92	238 03	g n	n
Lawrencium*	²⁶² Lr	103	262.11			Vanadium	v	23	50 942		
Lead	Pb	82	207 2	g	r	Xenon	Xe	54	131 29(2)	gп	n
lithium	Li	3	[6 941(2)] [†]	g m	r	Ytterbium	УЪ	70	173.04(3)	g	
Lutetium	Lu	71	174 97	g		Yttrium	Y	39	88 906	-	
Magnesium	Mg	12	24.305	-		Zinc	Zn	30	65 39(2)		
Manganese	Mn	25	54.938			Zirconium	Zr	40	91 224(2)	g	
Mendelevium*	²⁵⁸ Md	101	258 10						(-)	0	

[†]Commercially available lithium materials have atomic weights that range between 6.94 and 6.99; if a more accurate value is required, it must be determined for the specific material.

may have to be altered. Moreover, any change in an abridged value will probably be by only one unit in the last significant figure or by adding a fifth significant figure where only four can be given now. Such constancy in these values is desirable for textbooks and numerical tables derived from atomic-weight data. However, it should be remembered that the best atomic-weight values of 27 elements are still uncertain by more than one unit in the fifth significant figure. The annotated warnings of anomalous geological occurrences, isotopically altered materials, and variability of radioactive elements are relevant even in the abridged Table. The footnote concerning lithium is particularly important.